
TABLE i 

m, kg I 
..7 

0,6 
0,6 t3,1 
0,6 13,1 
0,3 [ 4.86 

R,m 

0,065 
0,063 
0,063 
0,063 
0,063 
0,063 
0,063 

l Vo ,  m/ 
sec  

3,65 
i,73 
3,84 
5,20 
4,20 
5,56 
6,50 

P~ I P2 

335 399 
t20 t28 
286 33i 
397 474 
t93 207 
252 289 
300 349 

kN: 

222 356 324 
80 t34 121 

t88 298 273 
260 404 372 
123 t99 182 
266 263 243 
i96 308 286 

T~ [ Tz [ T~ [ T4 [ T5 

c. i0--3 

f 
0,354 0,3t0 0,518 0,322[0,348 
0,49210,3t0 0,459 0,265 t 0,298 
0,274[ 0,260 0,427 0,265 0,287 
0.240 10,249 0,417 0,265 0,280 
01197 [ 0,i75 I 0,270 I 0,16i 0,175 
0,165 0,165 [ 0,260 I 0,t61 0,170 

0,i60 0,t61 0,149 0,170 

experiments reported in [4], and the results of our calculations were compared with the 
experimental results. Steel rods of length s and mass m fell with initial speed v 0 onto a 
base of duraluminum DI-T. ~The ends of the rods were curved (with radius of curvature R). The 
basic impact characteristics are shown in Table i. Here Pl, P2, Ps, P4, and P~ are the 
maximum values of the contact force as determined, experimentally in [4], by the Sears model in 
[i], by Kil'chevskii's elastic-plastic model in [3], and by the rigid-plastic and elastic- 
plastic local deformation models, respectively; TI, T2, T3, T4, and T S are the times of 
impact. Comparing results, we see that the Sears theory, based on an elastic model due to 
Hertz, gives a value for Pmax greater, on the average by 20-30%, in comparison with the ex- 
perimental value, and it gives a lower value for T. The theory, based on Kil'chevskii's 
elastic-plastic model [3], yields a value for Pmax lower by 30-40% and a larger value for 
T. The theory proposed here yields results which differ from the experimental results by 
2-6%. In the case of the rigid-plastic model, a particular case of the elastic-plastic 
model, the basic impact parameters are given in the explicit form (12) and results of cal- 
culations differ from experiment by 2-12%. 
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COMPACT REPRESENTATION OF THE FUNDAMENTAL SOLUTION OF THE 

INTERNAL LAMB PROBLEM ON A FREE SURFACE 

A. S. Tyapin and A. I. Startsev UDC 534.16,+550.344.5 

The now-classical expression derived [i] for the Green's function of the problem of 
ground surface displacements induced by an explosion in a homogeneous containment medium is 
written in the form of a three-term sum. One of the terms is the Boussinesq solution for a 
half-space, which assumes that the disturbance propagates instantaneously [2]; another term 
contains typical Rayleigh components, and the third represents certain real integrals. This 
representation of the Green's function is convenient from the standpoint of the physical 
treatment of the propagation of seismic waves in a medium and affords a rapid and efficient 
means of calculating the displacements far from the wave front. However, it is nonoptimal 
for calculating the displacements near the wave front at a large distance from the detonation 
epicenter, where the indicated terms strongly suppress one another in the vicinity of the 
front. 

In the present article we describe an attempt to surmount this difficulty by deriving a 
more compact representation of the Green's function in question without incurring such a 
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mutual cancellation of the individual terms. This is accomplished by changing the previously 
adopted [i] order of integration with respect to the frequency and the wave vector in the 
basic equations, essentially in the spirit of Lamb's method. The feasibility of switching 
the order of integration in this way with the proper choice of contours of integration has 
been proved [3] as part of a comparison of the method of partial separation of variables with 
the Smirnov-Sobolev method of complex solutions [4]. In this sense the present study is 
a natural elaboration of the approach suggested by Petrashen' et al. [3], and it provides a 
concrete illustration of the well-known equivalence of different forms of the solution of 
seismological problems [5]. 

i. In carrying out the intermediate calculations, it is more convenient to work with the 
Green's function Xr,z corresponding to a delta-function displacement signal, and then to con- 
vert later to the customary linearly increasing displacement signal or a unit-step signal in 
the form of a Heaviside function for the velocities. We therefore consider the functions 

Xr (T,) = ~ dkpe ~: kp 
--oo C(h) 

o o  

vse--Vp H k2J1(kr)(k2 �89 
(1.1) 

Here H is the charge-placement depth, r is the epicentral distance from an observation point 
on the ground surface to the detonation center, R 0 is the elastic radius at which the source 
function is specified, Rf = CpX + R 0 is the radius of the wave front, the time x is measured 
from the instant at which the source begins to take effect on a sphere of the indicated ra- 
dius Ro, y = Cs/C p is the ratio of the propagation velocities of transverse (shear) and 
longitudinal (pressure) waves in the containment medium, kp, s = ~/Cp,s, ~ is the angular fre- 
quency, and k is the horizontal component of the wave vector. 

The quantities ~, = = ~k 2 - k 2 characterize the attenuation of inhomogeneous or com- _p,s 
plex seismic waves wi~h=distance from the source (from the ground surface in the case of 
Rayleigh waves) along the vertical axis. In the cases k 2 < k~ for longitudinal waves and 
k = < k~ for transverse waves these quantities go over to the vertical components • of the 
wave vectors, multiplied by an imaginary unit. The contour of integration C(k) in Eq. '(i.i) 

k 2 is chosen so that xp.s =-V p,s -k~ for positive frequencies and Xp,s =~l ~v,S k ~ for negative 
frequencies. This choice of contour corresponds to the condition that only waves traveling 
away from the free surface are present at large depths in the medium. The upward direction 
is considered the z axis. The origin is located at the epicenter of the explosion. 

These conditions are satisfied if the contour C(k) is drawn parallel to the real axis 
for positive frequencies - below it for positive frequencies and above it for negative fre- 
quencies. These contours of integration correspond to the cuts proposed by Aki and Richards 
[6] in the complex plane of the variable k for the solution of problems of this kind. On the 
real axis these cuts are situated on the intervals 0 < k < Ikpl for longitudinal waves and 
0 < k < Iksl for transverse waves. 

The Green's functions (i.i) are adopted as basic so that the domain of zero frequencies, 
where the contour of integration changes, will not contribute to them. We also note that the 
selected contours, as postulated, make the functions Xr,z real-valued. Consequently, we can 
in fact limit the integration in Eq. (i.i) to positive frequencies only and then double the 
real part of the result. 

For all positive frequencies the contour of integration with respect to k is unique. 
For this reason, setting k = kpy, we can rewrite Eq. (I.i) in the form 

ioo 

!~ Jl(rykp) 
0 

e- < H I/Y~------~ + iRf ') hp]C~ dkp}, 

S Jo (rykp) dkp . 
0 

(1.2) 
_ I  
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The cuts for the square-root functions in this expression are situated on the real axis 
on the intervals (0, I) and (0, a), where a = i/~. The contour of integration C(y) runs 
parallel to and below the real axis. 

We now replace one of the factors kp in Eq. (1.2) by the time derivative, replace the 
other one by space derivatives with respect to r for Xr and with respect to H for Xz, and 
then compute the inner integrals. As a result, we have 

I ) V y _ _ ~ R ~ i  ' c \y2 -- a 2 

R~ 8 2 iy (y~: ~ a 2 dy 
Zz (J = u?~ o-~ OH Re 2 i 

(1.3) 

where 

B (y) = l / r~y~ + ( H  V V  - -  i + ~Rf) ~- 
For the ensuing discussion it is useful to augment the contour C(y) with a quarter- 

circle of infinitely large radius connecting the positive real semiaxis to the negative 
imaginary semiaxis. The integrals along this arc in Eq. (1.3) are finite, but do not depend 
on the time. The functions Xr,z are therefore left unchanged by this modification of the 
contour of integration. 

We also note that if the wave has not yet reached the observation point, i.e~, if the 
hypocentral distance R = Jr ~ + H 2 > Rf, the branch points of the root R(y) are situated on 
the real axis. In fact transforming this root to the form 

4) 

we find that the expression under the square-root sign vanishes at the points Y0 determined 
by the equation 

t ( i  s) 
- -  R 2 "  

It is readily verified that the right-hand side of this equation is smaller than unity. 
Consequently, the branch points of the given root are located on the interval of the real 
axis (-I, i) and do not prohibit the contour C(y) from being arbitrarily deformed in the 
fourth quadrant. We make this contour coincide with the negative imaginary semiaxis. On 
it, by virtue of the remark concerning the right-hand side of Eq. (1.5), the expression 
under the square-root sign in Eq. (1.4) is negative. Consequently, under the condition Rf < 
R the integrals in Eq. (1.3) are purely imaginary and do not contribute to the functions 
Xr,z, which are therefore equal to zero for Rf < R in accordance with the causality principle. 

If Rf > R, the integrands in Eq. (1.3) are purely imaginary on the interval of the real 
axis 0 < y < I, because now R2(y) < 0 by virtue of Eq. (1.4). This fact can be utilized to 
shift the origin of the contour of integration to the point y = 1 and to set y = /i + x 2. 
As a result, the functions Xr,z are written in the form 

%r (T) --  ~72 OT Or Re ix ] / ~ - -  a ~ + x 2 dx 
a 2 c ) ( ~ - ~  + ~ 2 ) ~ - x ( i + ~ ) V i - ~ + ~  n(x) 

(1 .6)  

~ ? 2 ~ R e  (t 1 ) - - y  

where 

i ( l --  ~ a2-~ x2 ) dx 
o (~f - 9j 

R (x) ]' 2 

=~ + 2 - x (t  + x ~) V ' { -  =~ + x ~ 

n (x) = y~= (t + ~ )  +(~Zx + ~ ) ~  = R x + ~ - ~ - ]  - ~ \R ~ . (1.7) 
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The contour C(x) is analogous to the eontour C(y) augmented, as explained above, by a quarter- 
circle of infinite radius in the fourth quadrant. The unit function 0(Rf - R) in Eq. (1.6) 
emphasizes the fact that the given estimates of the functions Xr,z are valid for Rf ~R. 
Otherwise Xr,z 5 0. 

It follows from Eq. (1.7) that the expression under the square-root sign vanishes at the 

RfH r ~ / R ~  
p o i n t s  x~,~ = - - i - ~ - + _ _ ~ - - I  and on t h e  n e g a t i v e  i m a g i n a r y  a x i s ,  so t h a t  t h e  i n t e g r a l s  

a l o n g  i t  do n o t  c o n t r i b u t e  t o  X r , z -  We t h e r e f o r e  have  two c o n t o u r s  o f  i n t e g r a t i o n ,  which  
a r e  e q u i v a l e n t  t o  t h e  c o n t o u r  C(x)  and a r e  s u i t a b l e  f o r  c a l c u l a t i n g  t h e s e  f u n c t i o n s .  One 
o f  them c o r r e s p o n d s  t o  t h e  c l a s s i c a l  t r i n o m i a l  r e p r e s e n t a t i o n  o f  t h e  G r e e n ' s  f u n c t i o n .  I t  
c o n s i s t s  o f  t h e  u p p e r  and l ower  edges  o f  t h e  c u t  o f  t h e  f u n c t i o n  ~1 a 2 + x ~, a c i r c l e  o f  
i n f i n i t e l y  s m a l l  r a d i u s  a b o u t  t h e  R a y l e i g h  p o l e  d e t e r m i n e d  by t h e  z e r o  o f  t h e  d e n o m i n a t o r  o f  
t h e  i n t e g r a n d s  on t h e  r e a l  a x i s ,  and a s e m i c i r c l e  o f  i n f i n i t e l y  l a r g e  r a d i u s  c o n n e c t i n g  t h e  
positive and negative imaginary semiaxes. 

A more compact monomial representation of the Green's function is obtained if the con- 
hour C(x) coincides with the negative imaginary semiaxis. In this case the significant (from the 
point of view functions Xr,z) components of the integrals (1.6) are determined by the inte- 

grals along the upper and lower edges of the projection of the cut of R(x) into the fourth 
quadrant. Here, introducing the new variable of integration ~, which is defined as 

~ f ~  r I / R ~  i s i n ~ ,  ( 1 . 8 )  i z  = ~ = ~ + i --# V ~ "  - 

we obtain 

- I a~--i) ( 1 . 9 )  

2Ro 2 0 2 0(R R) (. t ~ ' 2 

q-a,  ~ ,  ~ _~) +;(~-~') l / t  ~ , 

2. The presence of the space derivatives in Eqs. (1.9) makes it difficult to use these 
equations in calculations. However, the derivatives are easily eliminated. In this regard, 
we note that the integrands in Eqs. (1.9), which we denote by Kr,z(~), depend only on ~. 
According to Eq. (1,8), 

0~ Rf H ~ R~If 0~ 0~ }f iRfrsin~ 

Consequently, ! 

OK.(~) 
Or 

iRf[[ OK,. ($) cos ~> 

+ R 2 ] / t l ~ -  R ~ o~ , 

OK. (~) g 0K~ ($) ~ ~nf?- 0K~ (0 cos 
OH =" -~z Kz (~) ORf R',_VR~__Rz 00" | 

Rewriting Eqs. (1.9) with this fact in mind, we find that 

R o 02Gr (x) R o 02Gz (~) 

The functions Gr,z(~) themselves have the significance of the Green' 
to a solitary signal in the form of a Heaviside unit step function for the velocities. 
are equal to zero for Rf < R, and for Rf ~ R we have 

2R ~ ~ R 
~r (~) = ~ Re { ~ 

0 \ 

s functions corresponding 
They 
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( 2 . t )  

At the wave front (Rf = R) these functions suddenly change to 

130 R-T a ~ _ B~i 
G ( ~ r ) = ~  , t ~ ~ ~  H~ ~ 1 /  ~'~ ' 

-~ ~ - - ~  ) + 7  V ~ - -a  ~ 
( 2 . 2 )  

R ~ It \ 2 R 2 ] 

G z ( T f )  = ?2 R 1 2 r" Ilr" a 2 
-~ ~ - -~ + --fi - ~ 

E q u a t i o n s  ( 2 . 1 )  a l s o  p r o v i d e  a s i m p l e  means f o r  o b t a i n i n g  a s y m p t o t i c  e s t i m a t e s  o f  t h e  G r e e n ' s  
f u n c t i o n s  in  q u e s t i o n  a t  l a r g e  t i m e s  (Rf >> R):  

2R o Rfr  ac 2R 0 R f H  
G~e( '~)=t--?~ / ~ ' e ~  (T) l - y "  R 3 " ( 2 . 3 )  

These estimates represent the Boussinesq solution for a half-space and occur as one of the 
terms in the trinomial representation of the Green's function. For the horizontal component 
of the displacement they are on the order of R/H times greater than the value of the Green's 
function at the wave front according to Eq. (2.2). At large distances from the detonation 
center this condition requires increased accuracy of computation of the integral term in the 
trinomial. As mentioned in the introduction, this fact has been the stimulus for seeking a 
more compact representation of the fundamental solution of the Lamb problem with an internal 
source. 

3. We have compared the Greens functions calculated according to Eqs. (2.1)with tabu- 
lated [2] values of these functions. In [2] the fundamental solutions, which we denote by 
Gr,z(~) , are given in dimensionless scale units of length and time. They are related to the 
above-defined Green's functions by the equations 

Grz (~) I000 i -- 30 Rf 
, = - g O -  T ? G , ~  ( %  T - l o o o  R 0 * 

A c a l c u l a t i o n  a c c o r d i n g  t o  t h e s e  e q u a t i o n s  shows t h a t  a g r e e m e n t  o c c u r s  in  a l l  s i g n i f i c a n t  
figures except in isolated cases, which are unquestionably misprints. This test confirms 
not only the validity of the representation (2.1) for the Green's function in question, but 
also its correct computer software implementation. 

4. As an example of the application of these equations, we give the displacements and 
mass velocities calculated by means of them on the free surface for an underground explosion 
at a depth H = 0.5 km in a medium with Cp = 5.5 km/sec and $ = i/v/~. The explosion is simu- 
lated by a Haskell source [7], which is specified on a sphere of radius R 0 = 0.I km. This 
source is characterized by the reduced potential, which has the time dependence 

�9 o(t) = ~ o ( ~ ) [ 1  - e W ( z ) ] ,  

where  f ( x )  = 1 + x + x 2 / 2  + x3 /6  - BHX 4, where  x = ~H t ,  and r  flH, and B H a r e  c o n s t a n t s ~  
S e e k i n g  t o  compare  our  own r e s u l t s  w i t h  t h o s e  p u b l i s h e d  in  [ 8 ] ,  we l e t  5H = 1 .45 s ec  -1 and 
B H = 0 . 5 .  The c o n s t a n t  r  i s  i n c o n s e q u e n t i a l ,  s i n c e  t h e  d i s p l a c e m e n t s  in  F i g s .  1 and 2, 
l i k e  t h o s e  in  F i g s .  5 .13  and 5 . 1 4  in  [ 8 ] ,  a r e  g i v e n  in  u n i t s  o f  @0(~)/H 2. A c c o r d i n g l y ,  t h e  
mass velocities u~ z(t) = Wr z (t) (the dot signifies the time derivative) are given in Figs. 
3 and 4 in units o~ ~0(~)/H2~, where time is measured from the instant at which the signal 
reaches the observation point. 

The displacements of the free surface are expressed in terms of the Green's functions 
(2.1) as follows: 

~-(R-G)#p 

Wr,z (t) = .I av , :  (t - -  T)/2 (T) dv.  ( 4 . 1 )  
0 
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Here f2(t) is the source function, which is proportional to the second time derivative of the 
reduced potential: 

/2(t) = ~o(t)/Ro%. ( 4 . 2 )  

The curves shown in Figs. 1-4 have the usual form described in [i]. They are typified 
by the presence of spikes at r/H ~ 5. The first spike, which decays comparatively rapidly 
with increasing distance from the detonation center, is created by the arrival of the seismic 
wave front at the observation point; the second spike, which decays more slowly, corresponds 
to a Rayleigh surface wave. The time time interval between the two spikes is approximately 
proportional to the epicentral distance; the width of the Rayleigh spike depends weakly on 
the distance in the case of the short-lived sources considered here. 

This situation is attributable to the fact that the profile of the Rayleigh wave for such 
sources is determined mainly by the fundamental solution. Indeed, if the active time of the 
source is short in comparison with the characteristic time scale of the fundamental solution 
and if, on the other hand, the arrival time of the Rayleigh wave at the observation point, 
reckoned from the arrival of the wave front, is large, then the functions Gr, z in Eq. (4.1) 
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can be expanded in a power series in T, and infinity can be taken as the upper limit of in- 
tegration. Taking Eq. (4.2) into account and ret@ining only the principal term in the re- 
quired estimate, we obtain Wr,z(t) ~ [#0(=)/RoCp]Gr,z(t). This asymptotic estimate illu- 
strates the foregoing considerations and shows that the amplitude of the Rayleigh wave far 
from the detonation center in the case of short-lived sources is proportional to #0(~), i.e., 
is proportional to the power of the source. 

These assertions become meaningless for long-lasting sources of the earthquake type. 
Experiments [9] show that the period of the surface waves grows in this case. This is also 
readily confirmed analytically by setting ~H ~ 1 sec -I. 

In closing, we regret having to say that our calculations do not agree with those in 
[8], where an attempt is made to obtain expressions for the Green's function that will lead 
to fulfillment of the causality principle. We note that our proposed approach meets this 
requirement, because the fundamental solution (2.1) is in fact nonvanishing only after the 
wave front, i.e., Rf ~R. A far more complicated expression is obtained in [8] for the 
solution and is difficult to analyze either analytically or numerically. Consequently, the 
reason for these discrepancies has eluded us. It could be both the lack of equivalence be- 
tween the expressions derived here and in [8] for the Green's functions and also insufficient 
accuracy in the numerical calculations. 
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